

HYDROGEN TECH WORLD CONFERENCE 2025

ENHANCING TECHNO-ECONOMIC FEASIBILITY IN POWER-TO-X PROJECTS THROUGH SYSTEM MODELLING AND OPTIMIZATION

LORENZO LA PORTA

PROJECT ENGINEER – HYDROGEN, ILF CONSULTING ENGINEERS LORENZO.LA-PORTA@ILF.COM

> Hydrogen Tech World Conference 2025

ILF at a Glance

01 ILF AT A GLANCE

ILF CONSULTING ENGINEERS PROVIDES COMPREHENSIVE ENGINEERING SERVICES FOR MAJOR INDUSTRIAL AND INFRASTRUCTURE PROJECTS.

ILF in numbers

11,000+

Projects successfully executed

150+

Countries in which ILF has been successful

45+

 Office locations across five continents

400+ » Million € revenue

55+ » Years of experience

OT ILF AT A GLANCE PTX OPTIMIZATION PROJECTS

Germany; Green H₂ Pre-feasibility Study (inc. optimization).

Italy; Green Methane Pre-feasibility Study (inc. optimization).

> Oman; Green H₂ & NH₃ Feasibility Study, (inc. Optimization)

01 ILF AT A GLANCE

ILF'S PROVIDES ENGINEERING AND CONSULTING SERVICES IN VARIOUS BUSINESS AREAS WHICH COVER THE ENTIRE VALUE CHAIN OF POWER-TO-X PROJECTS.

Green Molecule Economy - ILF is your reliable partner for future oriented projects

Renewable Energy

- ILF offers optimized, state-of-the-art solutions for a wide array of energy transition initiatives.
- ILF has deep expertise in energy & climate protection including solar and wind power.

Hydrogen

- ILF is actively involved in process industry and energy related projects.
- ILF's expertise covers the full value chain of hydrogen energy from sourcing to exports.

Power to X

ILF offers tailored solutions for the implementation of P2X projects & cost benchmarking for production, treatment, transportation, use and storage.

C Hydrogen Tech Conference 2025

ILF'S EXTENSIVE PROJECT EXPERIENCE ACROSS ALL PROJECT PHASES PROVIDES VALUABLE INSIGHTS FROM DIVERSE PERSPECTIVES, DRIVING SUCCESSFUL OPTIMIZATION PROJECTS.

Project Life Cycle	APPRAISE	SELECT	DEFINE	EXECUTE	OPERATE	CLOSE
	Market Analysis	Financia	I Advisory	Lender's Techni	ical Advisory (TA)	
	Master Planning	Transaction Advisory, Due Diligence (DD)				
CONSULTING	Institutiona	al Analysis Institutional Strengthening		Strengthening	O&M* Consultancy	
CONSULTING	Project Screening	Public Private Partne	ership (PPP) Advisory	Dispute Resolution	Optimisation Studies	
	Pre-Feasibility	Environmental Social Im	pact Assessment (ESIA)			
	Energy	System Modelling & Optin	nization			
	Owner's Engineer			Integrity Assessment	Decommissioning	
	Engineering Procurement Construction Management (EPCM)					
ENGINEERING	Feasibility Study	Conceptual Design	Basic Design	Guide Design	Rehabilitation	
		Selection Studies	FEED*	Detailed Design	Modification Design	
			Permit Engineering	Design Review	O&M* Support	
	Project Organisation	Projec	ct Management Consultancy	(PMC)	Operations Superviss.	
PROJECT MANAGEMENT		Risk Management				
		Stakeholder Management				
		Execution Planning	Procurement	Supply Chain Mngmt		FEED = Front End Engineering Des FS = Feasibility Study
				Construction Superv.		O&M = Operations and Maintenanc
		💭 Hud	rogen Tech Confe	rence 2025		

World

Why Energy System Modelling & Optimization for PtX projects

02 GREEN MOLECULE PRODUCTION - OPTIMIZATION WHAT IS A PTX SYSTEM?

System Components – Design Variables Hydrogen Production, Storage and Transport System **Renewable power 》 Energy Storage 》** HV **Hydrogen Plant** Local Offtake **》** Hydrogen Storage **>>** 副 **Synthesis Plant 》 Alternative Transport Options 》**

CHydrogen Tech World Conference 2025

WHY DO WE USE OPTIMIZATION FOR GREEN MOLECULE PRODUCTION? – IT IS A PROCESS TO SOLVE THE GREATEST CHALLENGES FACED BY THE SECTOR.

New Technical Challenges For The Industry

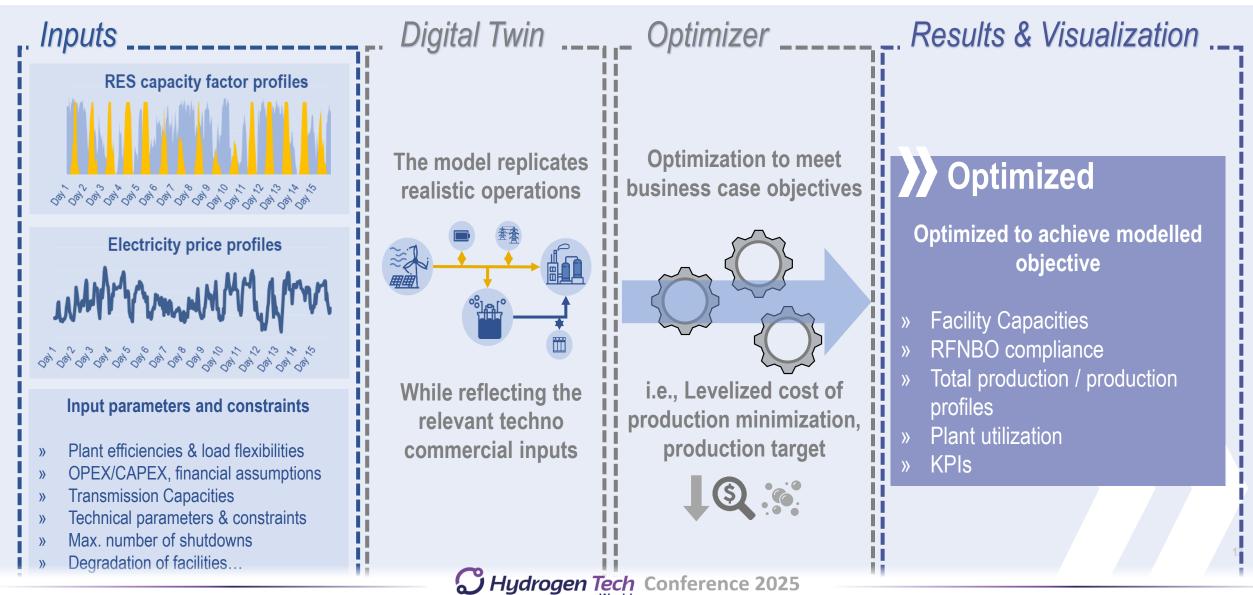
- » Fluctuating renewable power
- » Process plant load constraints
- » Storage requirements
- » Architecture selection and capacity definition
- » Sustainability / low carbon compliance
- » Project development challenges

Simulation & Optimization – the Solution

- » Compares quantitatively various system architectures
- » Defines optimal system capacities
- » Simulates optimal operations respecting the technical feasibility
- » Validates the project business case
- ...whilst minimizing total lifespan cost!

PROJECT DEVELOPMENT STRATEGY THAT INCLUDES MODELLING AND OPTIMIZATION PRACTICE SINCE THE EARLY PHASES MINIMIZES RISK AND MAXIMIZES VALUE

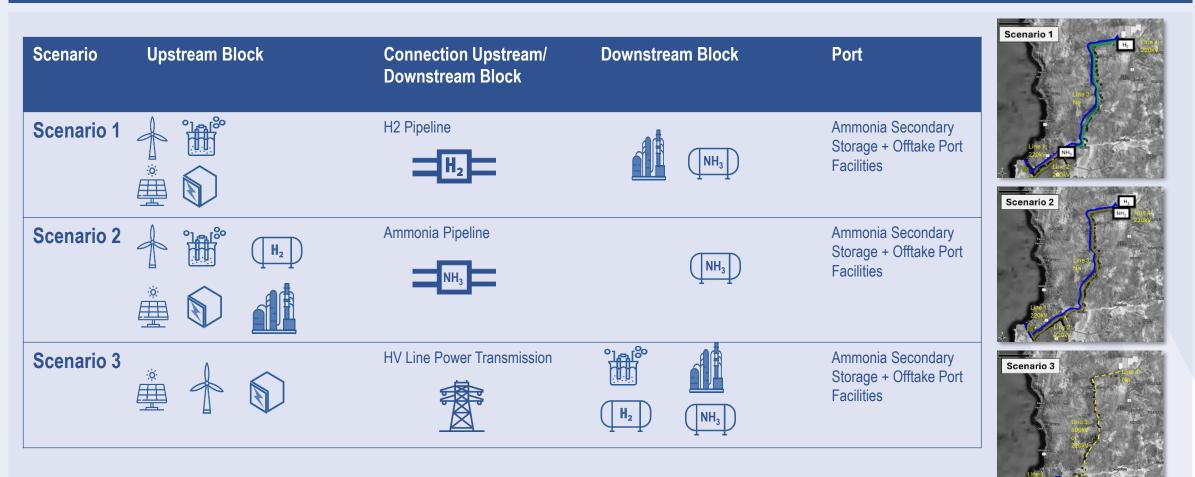
	FEL 1 - Appraise	FEL 2 - Select	FEL 3 - Define
Traditional Project Development Risks	 » Undefined system architecture, capacity, and production targets » Ambiguous levelized cost of production » Low confidence in project performance 	 » Lack of operational modelling leads to poor sizing decisions » Limited capability of comparing alternative concept option » Low confidence in performance 	 » High risk of wasted effort on suboptimal concept » Unclear production and cost projections » Low confidence for investment decision
+ System Modelling and Optimization Iterations	 » Early performance mapping of architectures » Accurate levelized cost modelling » Early assessment of techno-economic feasibility based on digital twin modelling 	 » Quantitative comparison of alternatives » Engineering hours spent for the optimal design only » Confirmation of project performance based on digital twin modelling 	 » Validation of concept prior to FEL-3 engineering » Lower risk of required conceptual changes during execution » Detailed performance modeling for investment decision
	Hydroge	en Tech Conference 2025	



Methodology and Case Studies

03 METHODOLOGY AND CASE STUDY MODEL AND RESULTS ARE AS GOOD AS THE INPUT ASSUMPTIONS...

CASE STUDY 1 – EARLY ADOPTION OF OPTIMIZATION AND MODELLING METHODOLOGIES - LCOA ANALYSIS OF GREEN AMMONIA PRODUCTION OPTIONS


Project Informa	tion	
Cost and Mark Approach	tet Driveri	EL 2 - Select FEL 3 - Define 2 study FEL 3 (FEED)
Client	Confidential	Added value:
Time Frame	2025	» Early performance mapping of architectures
Project Info	Up to 3.5 GW PV Solar Grid connection for aux. consumptions c.a 1 MTPA ammonia	» Accurate levelized cost modelling in early stage» Higher confidence for decision gate
Service FEL-0 Levelized cost and optimization study of different production options ILF in-house PtX optimization and modelling tool		

CASE STUDY 1 – ILF CONDUCTED A MODELLING AND OPTIMIZATION STUDY TO ANALYZE THE LEVELIZED COST OF PRODUCTION FOR THREE MAIN ARCHITECTURE OPTIONS

Scenarios

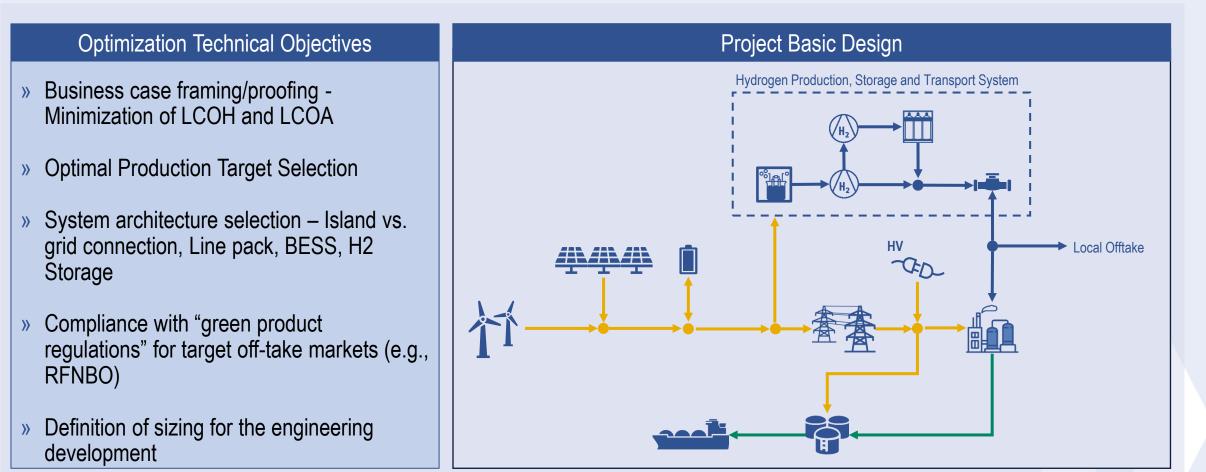
15 (

CASE STUDY 1 – ILF OPTIMIZATION STUDY PROVIDED A VALUABLE ANALYSIS THAT GUIDED THE CONCEPT SELECTION AND ENGINEERING DEVELOPMENT, BRIDGING THE TECHNICAL AND COMMERCIAL FEASIBILITY

» Analysis – interesting findings

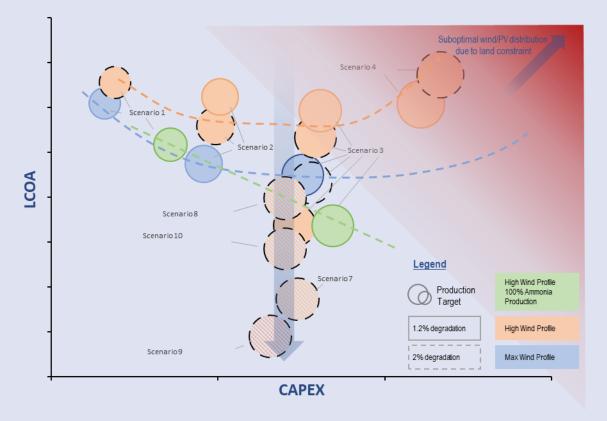
CASE STUDY 2 – DUQM PORT GREEN AMMONIA - OPTIMIZATION OF GW SCALE GREEN HYDROGEN AND AMMONIA PROJECT IN FEL-1

	9
	reserved
	rights reser
	ulting Engineers
	ng Engi
	ht © 2025 by
	opyright
17	


Project Informa	tion	
Cost and Mari Approach	ket Driveri	EL 2 - Select FEL 3 - Define 2 study FEL 3 (FEED)
Client	Confidential	Added value:
Time Frame	2024 – Ongoing	» Accurate cost and production modeling for optimal
Project Info	Multi GW facility in DUQM development area. 1+ Million concept	
Service	Feasibility Study and Pre-FEED scoping RFI process PLEXOS techno commercial system modelling and optimization including phasing	» Higher confidence for next project phase gate

CASE STUDY 2 – ILF CONDUCTED AN OPTIMIZATION STUDY FOR A GREEN HYDROGEN AND AMMONIA PROJECT IN OMAN, DETERMINING THE OPTIMAL PLANT CONFIGURATION, SIZING, AND PHASED PROJECT IMPLEMENTATION.

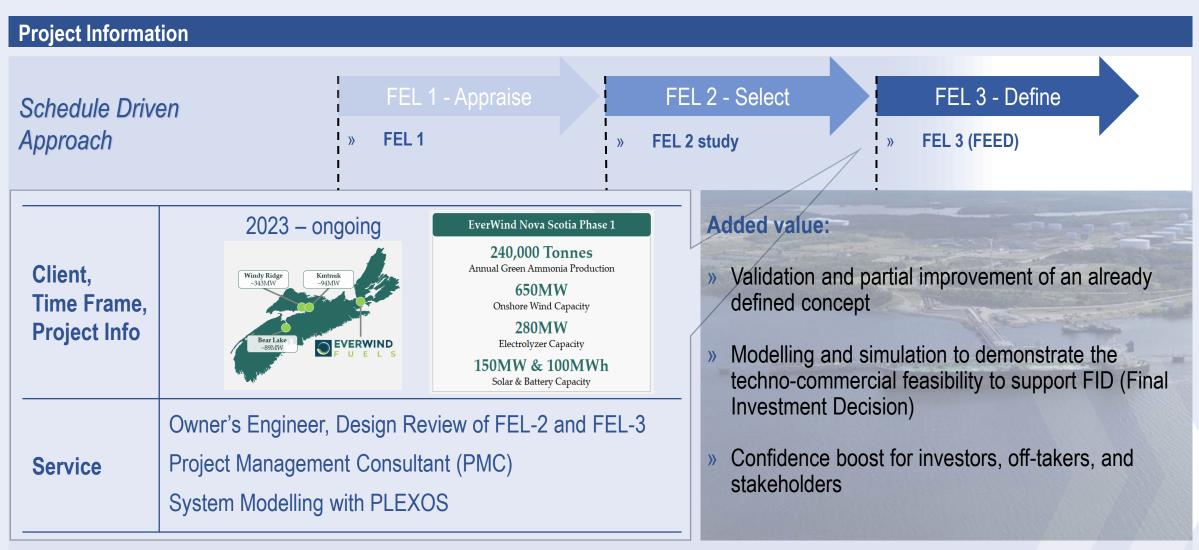
A brief insight into the project for a production of 1+ millions tons of Ammonia per year


Hydrogen Tech Conference 2025

Copyright © 2025 by ILF Consulting Engineers . All righ

CASE STUDY 2 – ILF OPTIMIZATION STUDY PROVIDED A VALUABLE ANALYSIS THAT GUIDED THE CONCEPT SELECTION AND ENGINEERING DEVELOPMENT, BRIDGING THE TECHNICAL AND COMMERCIAL FEASIBILITY

Analysis – interesting finding

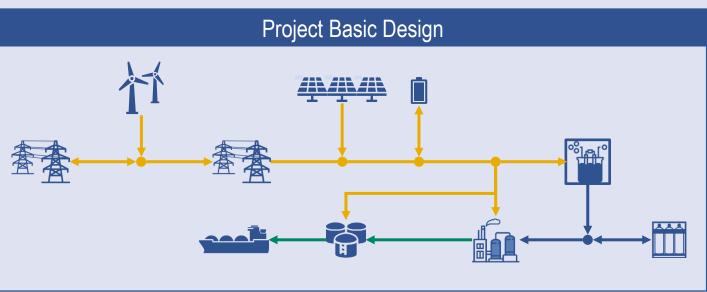

Some key findings:

- The Project highlighted the importance of applying an interdisciplinary approach → In combination with energy yield assessment and Request For Information (RFI) process
- » The PV and wind layout that minimizes the LCOA does not correspond to the LCOE optimal design
- » Production maximization does not correspond to LCOA minimization
- » Having access to common transport infrastructures can improve the business case (e.g. HVL, Line pack and grid connection), however, the main LCOA driver remain the CAPEX

CASE STUDY 3 – EVERWIND FUELS – CONCEPT VALIDATION STUDY THROUGH MODELLING AND OPTIMIZATION PRIOR TO FEL-3

A brief insight into the project for a production of 240 000 tons of Ammonia in Atlantic Canada

03 METHODOLOGY AND CASE STUDY

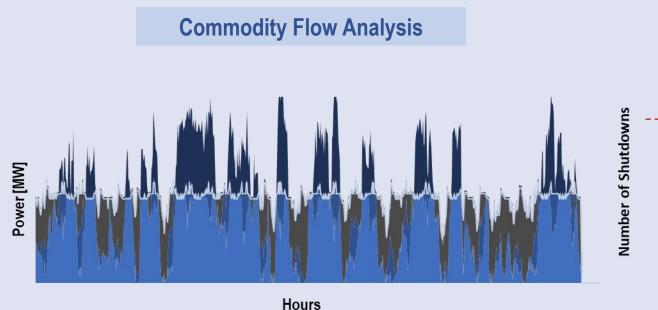

» Detailed LCOA calculation

» Power supply concept and capacity sizing

Optimization Technical Objectives

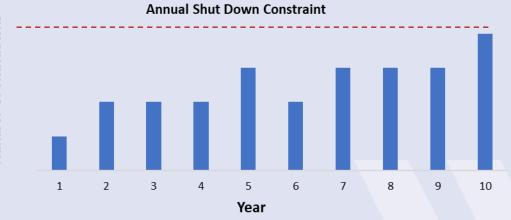
- » Energy storage Vs. gas storage
- » Plant operations optimized to minimize LCOA
- » Comparison of different electrolysis technologies and vendors
- » Assess feasibility of green ammonia plant operations coupled with fluctuating power supply

The main goal of the optimization was the validation of the FEL-2 concept, evaluating performance and further optimizing the renewable power supply concept



CASE STUDY 3 – ILF PROVIDED A STUDY TO SIZE THE POWER SUPPLY AND STORAGE CONCEPT TO MEET THE TECHNICAL CONSTRAINTS WHILE MINIMIZING THE LEVELIZED COST OF AMMONIA.

Post Sizing Analysis



Analysis on the techno-commercial implications of a different mix of wind, PV, and grid power and storage options.

Testing the optimized facility capacities against plant shutdowns and ramping constraints initiated by intermittent renewables

Resilience Testing

UTILIZING INDUSTRY-LEADING MODELLING AND OPTIMIZATION METHODOLOGIES IS A PREREQUISITE FOR THE SUCCESSFUL DEVELOPMENT OF A PTX PROJECT

Why is it necessary?

- » The engineering development requires a quantitative methodology to determine the optimal concept selection
- » Project developers need to optimize resources and want to maximize the project value
- » Investors require the confidence in the feasibility of the business case
- » Off-takers require the confidence that the project will deliver

What PtX Modelling & Optimization offers:

» Selection of the optimal system configuration and sizing

» Maximization of the project value and reduction of project development risk

» Validation of a business idea demonstrating that all key techno-economic challenges have been addressed in due time

Thank you for your time and engagement.

ILF Consulting Engineers Germany GmbH Werner-Eckert-Strasse 7 | 81829 Munich | Germany Phone.: +49 / 89 / 25 55 94 0 Fax: +49 / 89 / 25 55 94 - 144 Email: info.muc@ilf.com

Lorenzo La Porta lorenzo.la-porta@ilf.com +49 (89) 255 594 391

