CREATING VALUE WITH GREEN HYDROGEN BY INTEGRATING SOEC WITH DOWNSTREAM PLANTS

BAZC

zero emission molecules project development

TABLE OF CONTENT

- WHO IS BA2C AND WHAT IS BA2C DOING
- (GREEN) HYDROGEN VALUE CREATION
- TECHNOLOGIES AND INTEGRATING WITH DOWNSTREAM PLANTS
 - ADVANTAGES SOEC TECHNOLOGY
 - INTERGATING SOEC WITH SAF
 - INTEGRATING SOEC WITH DRI OR IRON FUEL
 - OPTIONAL INTEGRATING SOEC WITH AMMONIA-FERTILIZER
- OPTIONAL WHAT WILL BE THE FUTURE, HIGH TEMPERATURE OR LOW TEMPERATURE ELECTROLYSIS

WHO IS BA2C AND WHAT IS BA2C DOING

WHO IS BA2C AND WHAT IS BA2C DOING

SUMMARY

SPECIALIZED:

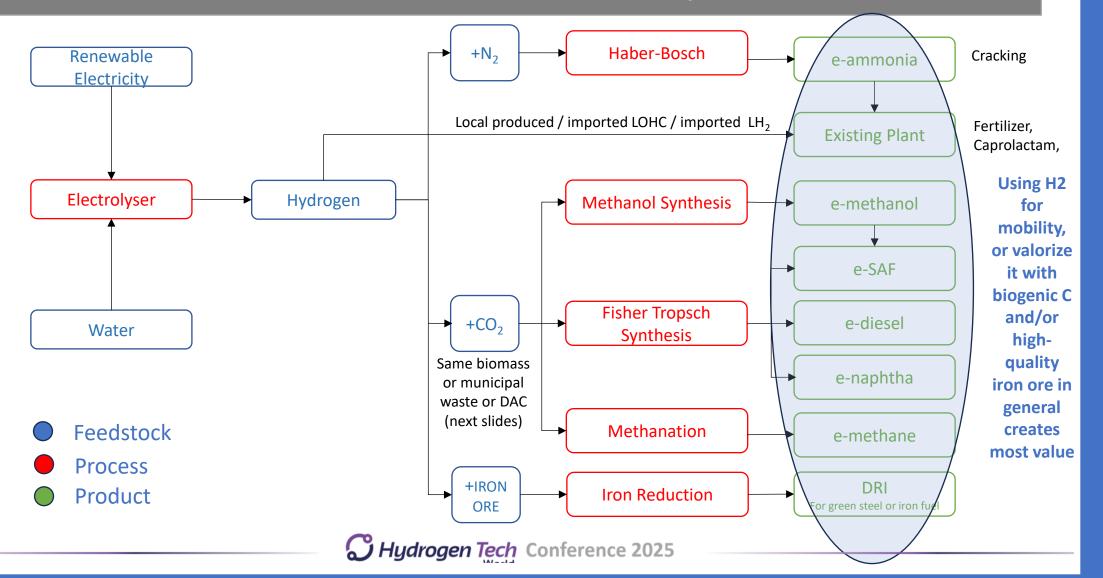
H₂ | MeOH | SAF | DRI - IRON FUEL | NH₃ - FERTILIZER

WHAT DO WE DO

- Technology development
- Project development
- Advisory (mainly investors & colleague project developers & EPC)

REGIONS

- Latin America
- Africa
- North Europe, Iberian Peninsula & CEE



(GREEN) HYDROGEN VALUE CREATION PRODUCTS WITH PREMIUM

HOW TO ADD VALUE TO GREEN HYDROGEN

USE IT TOGETHER WITH BIOGENIC CARBON AND/OR IRON ORE

BA2C EUROPE / LATIN AMERICA - 2025

BANKABLE PROJECTS WHAT DO YOU HAVE TO DEAL WITH?

- RENEWABLE PRODUCTS TECHNOLOGIES (H2/NH3-FERTILIZER/MeOH/DME/DRI)
- GHG SAVINGS DUE TO PROJECT AND CALCULATING THE VALUE
- CERTIFICATION
- **RIGHT TIME TO MARKET**
- POLICY SUPPORT
- FEEDSTOCK
- OFFTAKE AGREEMENT

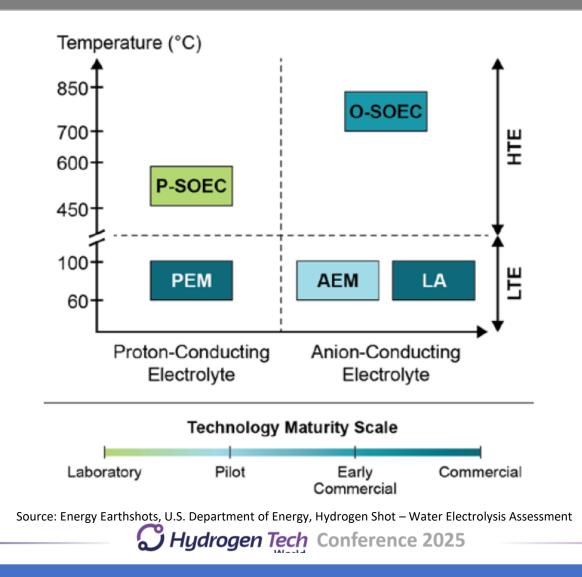
WHY SOEC + DOWNSTREAM PLANTS

TO OVERCOME CHALLENGE OF GREEN HYDROGEN (DERIVATIVES)

• SOME TECHNOLOGIES NOT EFFICIENT ENOUGH

- We need more efficient technologies. More emphasis on research in upcoming technologies
- GREEN PRODUCTS ARE MORE EXPENSIVE THAN FOSSIL PRODUCTS
 - More efficient technologies needed to make products cheaper
 - Include real cost (due to GHG emission) to fossil products
- TO DEAL WITH THESE CHALLENGES WE NEED (WORLDWIDE) REGULATIONS AND EMPHASIS ON DEVELOPING & MATURING TECHNOLOGIES

TECHNOLOGIES



ADVANTAGES SOEC TECHNOLOGY

GREEN HYDROGEN

EACH TECHNOLOGY HAS ITS ADVANTAGES & DISADVANTAGES

GREEN HYDROGEN

EACH TECHNOLOGY HAS ITS ADVANTAGES & DISADVANTAGES

Source: Hydrogen Research Europe

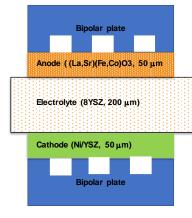
Expected Status 20	24 (based on 1	00MW system)	Expected Status 2030 (based on 100MW system)					
	Alkaline	PEM	SOEC		Alkaline	PEM	SOEC	
<u>SYSTEM*</u>				<u>SYSTEM*</u>				
Electrical consumption (kWh/kg)	49	52	39	Electrical consumption (kWh/kg)	48	48	37	
Heat demand steam (kWh/kg)	n.a.		9,0	Heat demand steam (kWh/kg)	n.a.	n.a.	8,0	
Capex ¹ €/kW €/(kg/d)	1000	1550 700	2000 1250	Capex ¹ €/kW €/(kg/d)	800 400	1000 500	800	
O&M cost (€/(kg/d)/y) ¹	43	30	130	O&M cost (€/(kg/d)/y) ¹	35	21	45	
Hot idle ramp time (sec.)	30	1	300	Hot idle ramp time (sec.)	10	1	180	
Cold start ramp time (sec.)	900	10	8 hours	Cold start ramp time (sec.)	300	10	4 hours	
Footprint (M ² /MW) ²	60	40	150	Footprint (M ² /MW) ²	40	25	50	
<u>STACK</u>				STACK				
Degradation (%/1000h)	0,11	0,15	1,0	Degradation (%/1000h)	0,1	0,12	0,5	
Current density (A/cm ²)	0,7	2,4	0,85	Current density (A/cm ²)	1,0	3,0	1,5	
Critical raw materials (mg/W)	0,3	1,25	n.a.	Critical raw materials (mg/W)	0,0	0,25	n.a.	

ISPT 1GW 2030 prognostication: 1GW Alkaline: EUR 730/kW, 1GW PEM: EUR 830/kW. All construction and electricity items included. Source ISPT 2022

*Standard boundary conditions that apply to all system KPIs: input of AC power and tap water; output of hydrogen meeting ISO 14687-2 at a pressure of 30 bar and hydrogen purity 5.0. Correction factors applied if actual boundary conditions are different.

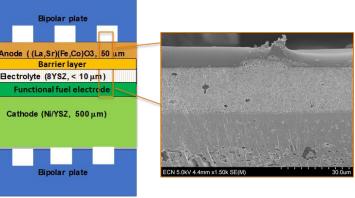
- 1) Capital cost are based on 100 MW production volume for a single company and on a 10-year system lifetime running in steady state operation, whereby end of life is defined as 10% increase in energy required for production of hydrogen. Stack replacements are not included in capital cost in O&M. Cost are for installation on a pre-prepared site (fundament/building and necessary preprepared site (fundament/building and necessary connections are available, Transformers & rectifiers not included.
- Average specific space requirement of a MW system comprising all auxiliary systems to meet standard boundary conditions in 1) and built up as indoor installation 2)

GREEN HYDROGEN


EACH TECHNOLOGY HAS ITS ADVANTAGES & DISADVANTAGES

	Parameter	Units	PEM			LA			O-SOEC		
			Status	Interim Targets	Ultimate Targets	Status	Interim Targets	Ultimate Targets	Status	Interim Targets	Ultimate Targets
System	Total platinum	mg/cm ²	3.0	0.5	0.125	-	-	-	-	-	-
	group metal (PGM) content ¹⁵	g/kW	0.8	0.1	0.03	-	-	-	-	-	-
	Performance	A/cm ² @V/cell	2.0 A/cm ² @ 1.9 V	3.0 A/cm² @ 1.8 V	3.0 A/cm ² @ 1.6 V	0.5 A/cm² @ 1.9 V	1.0 A/cm² @ 1.8 V	2.0 A/cm ² @ 1.7 V	0.6 A/cm ² @ 1.28 V	1.2 A/cm² @ 1.28 V	2.0 A/cm ² @ 1.28 V
	Electrical efficiency	kWh/kg H ₂	51	48	43	51	48	45	34	34	34
	Lifetime	Operation hours	40,000	80,000	80,000	60,000	80,000	80,000	20,000	40,000	80,000
	Average degradation rate	mV/kh	4.8	2.3	2.0	3.2	2.3	2.1	6.4	3.2	1.6
	Capital cost	\$/kW	450	100	50	250	100	50	300	125	50
	Energy efficiency ¹⁶	kWh/kg H ₂	55	51	46	55	52	48	47)44	42
	Uninstalled capital cost	\$/kW	1,000	250	150	500) ₂₅₀ (150) _{2,500}	500	200

SOEC IS FRAGILE... BUT


VARIOUS OEM'S ARE LOOKING FOR SOLUTIONS (EXAMPLE CERES)

Electrolyte supported SOE (ESC, T>800°C)

"Sunfire" type

Electrode (Anode) supported SOE (ASC, 600-850°C)

10,10 cm/TNO/half-cells

"other OEM" type

Source TNO Voltachem

- Thin ceramic sandwich on low cost perforated stainless steel
- Electrolyte (ceria based) reduce operating temperature 450-630°C
- Metal support enables robust, laser welded seals

Source Ceres Hydrogen

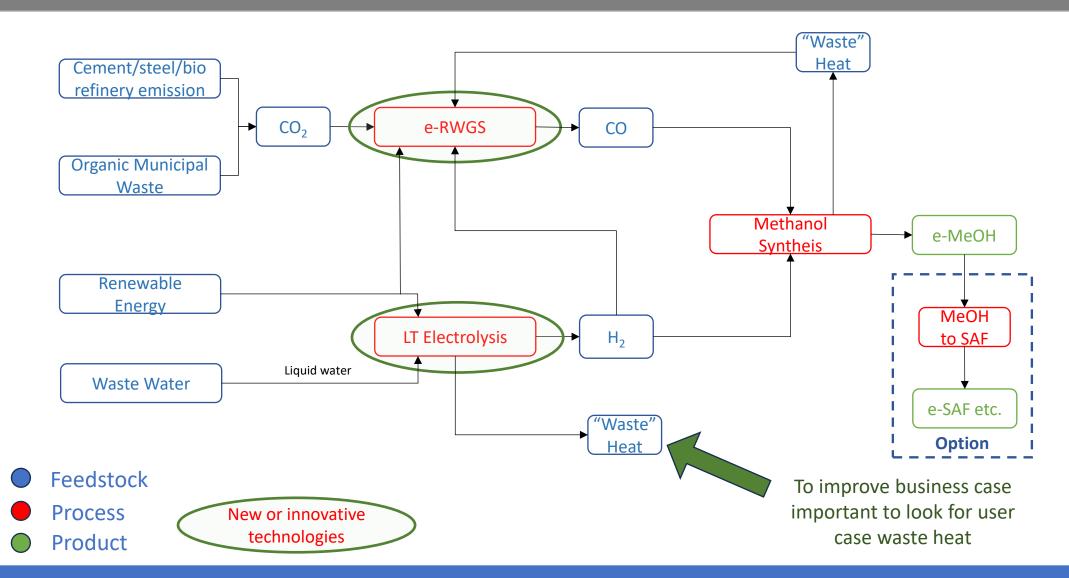
NEW TYPE: METAL SUPPORTED SOEC

INTEGRATING SOEC WITH eSAF

MAXIMIZING ENERGY EFFICIENCY IS NEEDED

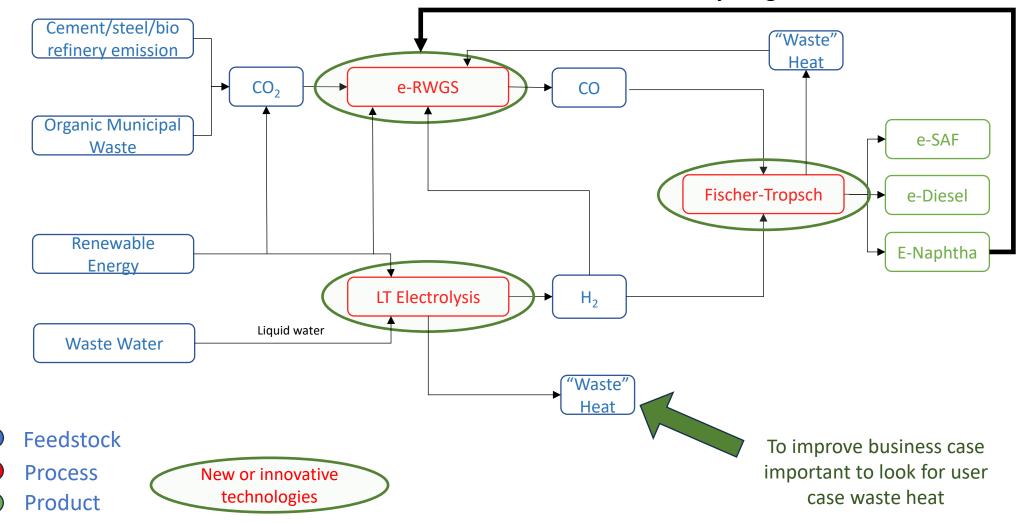
$$3 H_2O + energy \longrightarrow 3 H_2 + 1,5 O_2$$
$$CO_2 + 3 H_2 \longrightarrow -(CH_2) - + 2H_2O$$

 $H_2O + CO_2 + energy \longrightarrow -(CH_2) - + 1,5 O_2$

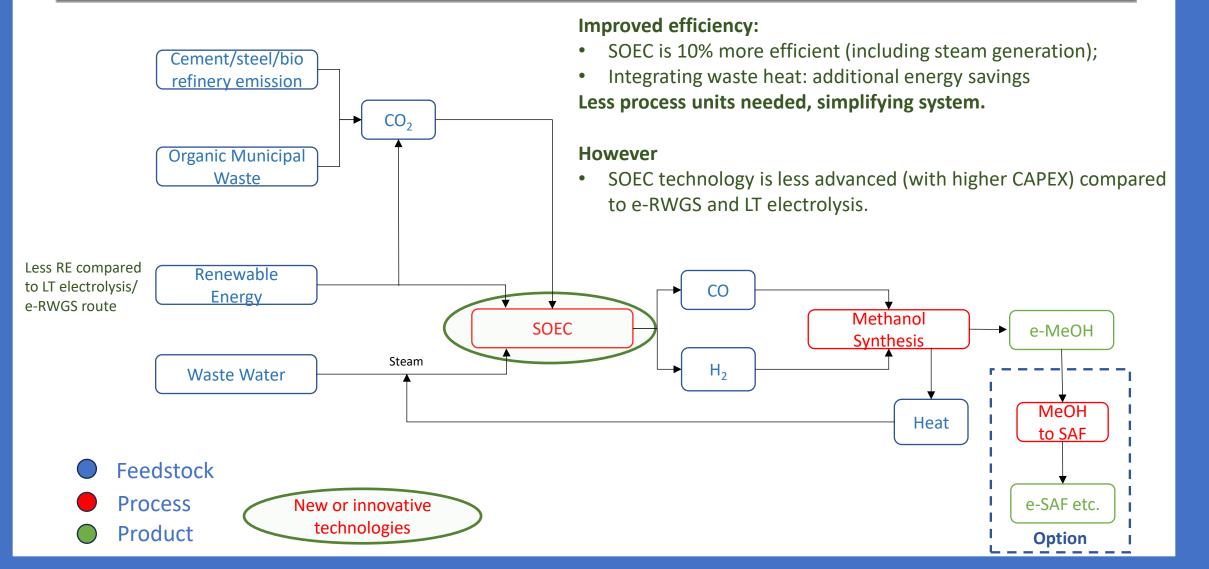

eSAF production is reverse combustion -(CH_2)- + 1,5 O_2 \longrightarrow $H_2O + CO_2$ + energy

Production cost SAF = 10 times production cost conventional aviation fuel THEREFORE WE NEED MORE EFFICIENT PROCESSES

e-MeOH AS FEEDSTOCK FOR e-SAF (1/2)

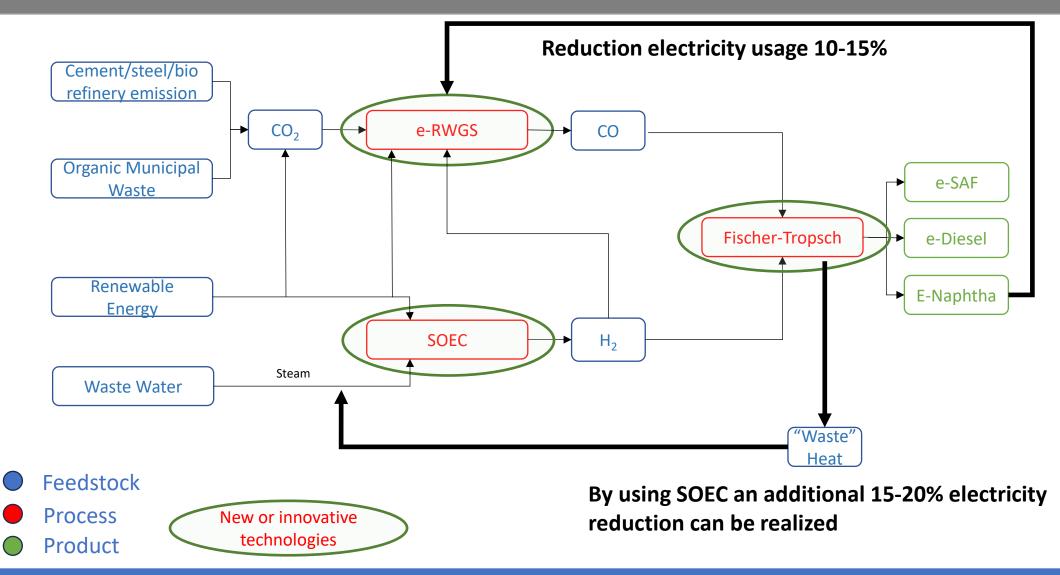

STEP 1: GREEN HYDROGEN THROUGH LOW TEMPERATURE ELECTROLYSIS

e-SAF USING FISCHER - TROPSCH (1/2)

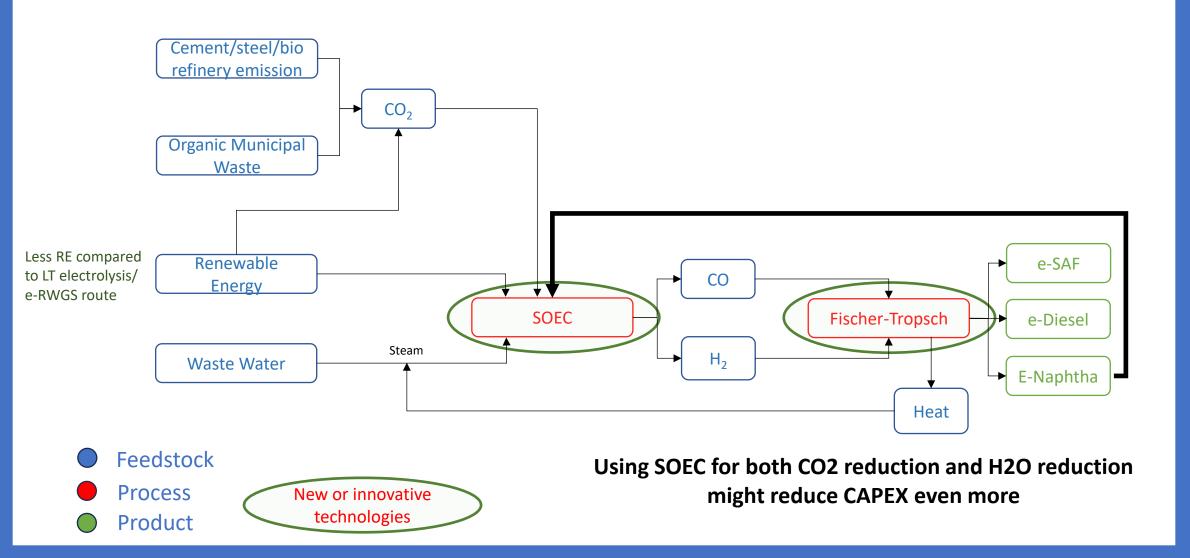

STEP 1: GREEN HYDROGEN THROUGH LOW TEMPERATURE ELECTROLYSIS

Reduction electricity usage 10-15%

e-MeOH AS FEEDSTOCK FOR e-SAF (2/2)


STEP 2: INTRODUCTION SOEC

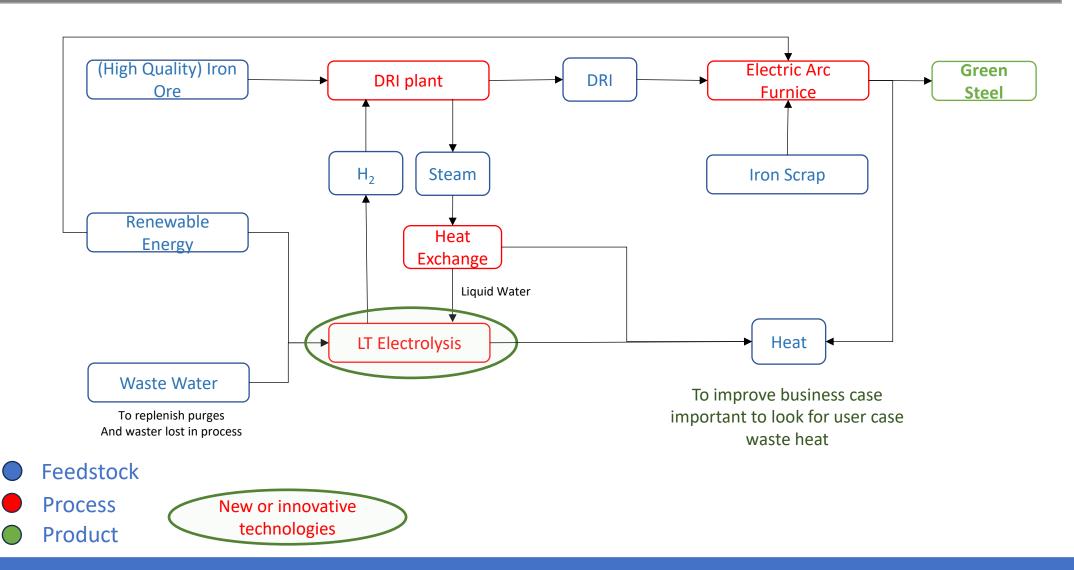
BA2C EUROPE / LATIN AMERICA - CONFIDENTIAL - 2024


e-SAF USING FISCHER - TROPSCH (1/2)

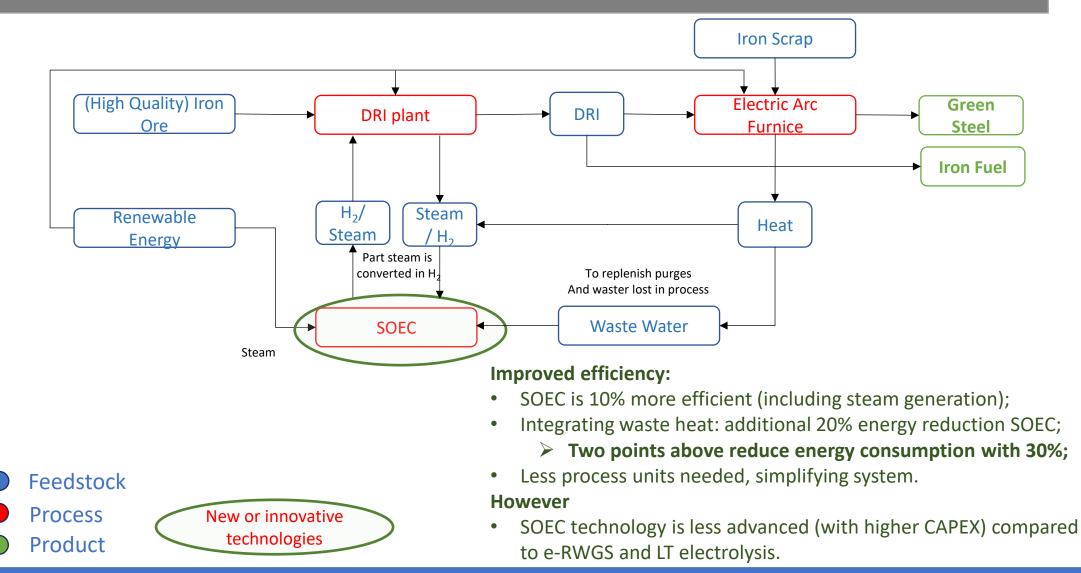
STEP 1: GREEN HYDROGEN THROUGH LOW TEMPERATURE ELECTROLYSIS

e-SAF USING FISCHER - TROPSCH (2/2)

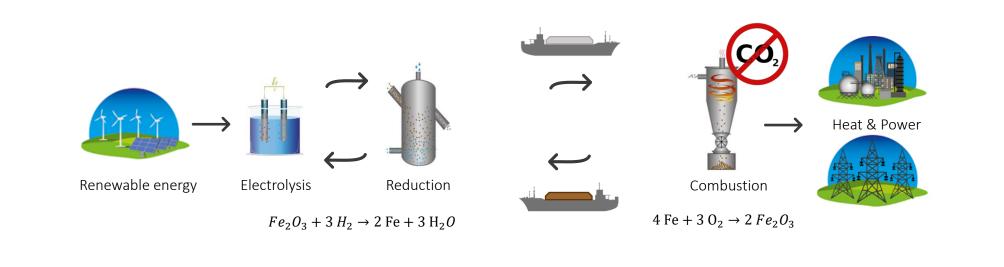
STEP 2: INTRODUCTION SOEC

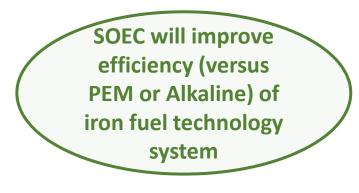


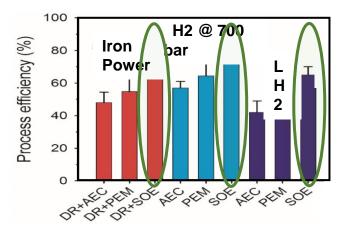
INTEGRATING SOEC WITH DRI OR IRON FUEL


DRI / IRON FUEL (1/3)

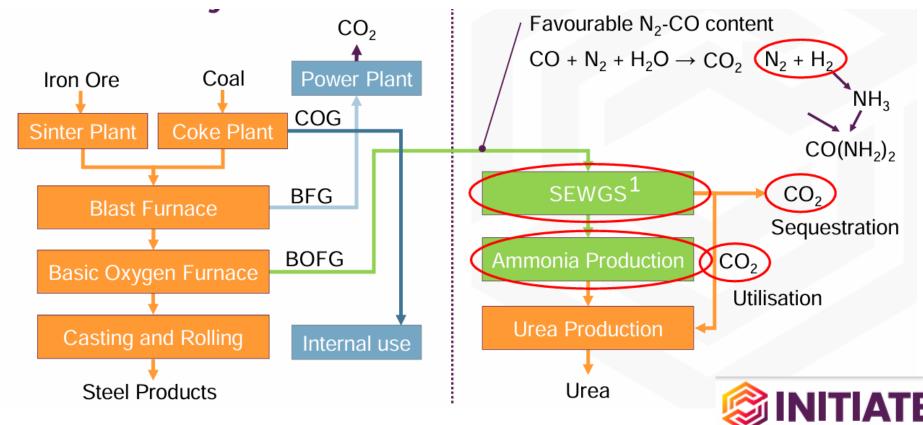
STEP 1: GREEN STEEL PRODUCTION




DRI / IRON FUEL (2/3)


STEP 1: INTRODUCING SOEC TO PRODUCE GREEN STEEL MORE EFFICIENT

DRI / IRON FUEL (3/3) INNOVATIVE WAY FOR CHEAP, SAFE & EASY TRANSPORT & STORAGE OF RENEWABLE ENERGY


DR = Direct Reduction (Regeneration plant) AEC = Alkaline Electrolysis Cell (Electrolyser) PEM = Proton Exchange Membrane (Electrolyser) SOE = Solid Oxide Electrolyser CH2 = Compressed hydrogen @ 700 bar LH2 = Liquified hydrogen

Source: Metalot

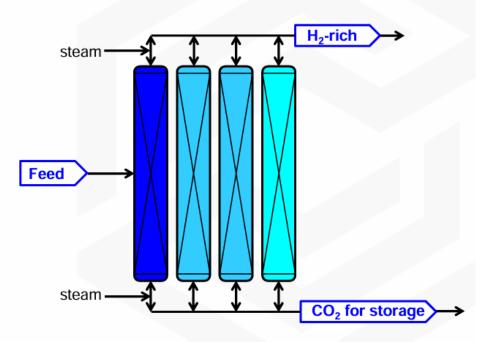
INDUSTRIAL INTEGRATION (FUTURE POSSIBILITIES)

JOINT RESEARCH INDSUSTRY PROJECT INITIATE: INDUSTRIAL SYMBIOSIS STEEL & FERTILIZER

Create bankable case for a first commercial size demonstrator at a scale of 50 kt/y urea production capacity on the basis of BOF

1) SEWGS = Sorption enhanced water gas shift reaction

INDUSTRIAL INTEGRATION (FUTURE POSSIBILITIES) JOINT RESEARCH INDSUSTRY PROJECT INITIATE: INDUSTRIAL SYMBIOSIS STEEL & FERTILIZER


Enabling technologies

Sorption Enhanced Water Gas Shift - SEWGS

- TNO development
- · Industrially sourced solid adsorbent
- Combining CO₂ separation with WGS reaction
- + Optimizing N_2/N_2 while removing CO_2
- · Minimization of energy requirement

Sub-stoichiometric NH_3 synthesis

- NextChem development
- Suitable for variable H_2/N_2 ratio
- · Simplification of knock-out and recycle
- · More suitable for dynamics

CONTACT

B A Z C

zero emission molecules project development

Smart invest today, Lower cost tomorrow

BA2C Europe / Latin America wfrens@ba2c.com +31 6 48353263