Duplex Stainless Steel in Heat Exchangers for Alkaline Electrolyzers

Angela Philipp, Technical Marketing, EMEA Jonas Höwing, Technical Marketing, EMEA

Advancing industries through materials technology

Industrial

- Solid round bar and hollow bar
- High pressure tubing
- Composite tubing
- Wear resistance strip

- Chemical and petrochemical — Fertilizer tubing
- Hydraulic and instrumental tubing
- Heat exchanger tubing

- Oil and gas
- Umbilical tubing
 Control lines
- Oil Country Tubular

- Industrial heating
- Metallic heating elements
- Ceramic heating elements
- Radiant Kanthal[®] APM /
- Kanthal APMT[®] tubes
- Diffusion cassettes

Consumer

- Compressor valve steel
- Stainless knife steel
- Razor blade steel
- Appliance wire

Power generation — Steam generator tubes

- Cladding tubing
- Nuclear tubes and pipes
- Strip steel spacers

Mining and construction — Rock drill steel

Transportation — Titanium and stainless-steel tubes

- Gasoline Direct Injection (GDI) tubes
- Compressor valve steel
- Shock absorber steel

Medical precision wire

- Medical tubing
- Medical strip

Hydrogen and renewable energy

- Coated strip steel for fuel cells
- High pressure tubing for hydrogen applications
- High nickel alloy tubing for concentrated solar power applications

ALKALINE ELECTROLYZER INTRODUCTION

Image used by permission from Nel Hydrogen.

Alkaline electrolyzers – basic operations

- Electrolyte is commonly 25-30% KOH
- Produces hydrogen and oxygen gas by electrolysis of water in an alkaline environment
 - Cathode reaction: $2 H_2O(I) + 2e^- \rightarrow H_2(g) + 2 OH^-(aq)$
 - Anode reaction: $2 \text{ OH}^{-}(aq) \rightarrow \frac{1}{2}O_2(g) + H_2O(I) + 2e^{-1}$
 - Overall reaction: $H_2O(I) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$
- Operating pressure up to 30 bar
- Operating temperature 80-90°C

Alkaline electrolyzers – design considerations

- Components in the electrolyzer system
 - The cell stack.
 - Piping for electrolyte and electrolyte + gases
 - Gas separators
 - Tanks for electrolyte and water replenishment
 - Heat exchangers for cooling and balance of plant (BOP)
 - Depending on location, freshwater or seawater cooling can be used

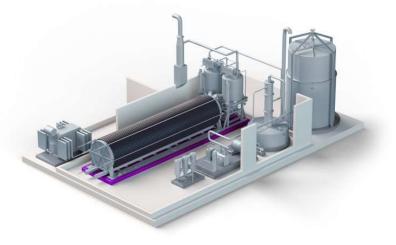


Image used by permission from Nel Hydrogen.

Alkaline electrolyzers – design considerations

- Water is consumed in operation and replenished
 - Any added impurities will build up in the system
 - Water needs to be very clean
 - Corrosion products will build up in the system
 - Can cause problems with catalysts
 - Can cause blockage in small-diameter tubes and pipes.
 - Materials must be corrosion-resistant to the operating environment

Stainless steels in caustic solutions

General information and chemical composition

Corrosion resistance of austenitic and duplex grades

Conversion of corrosion data for NaOH to KOH

General information

- Solutions of sodium or potassium hydroxide (NaOH and KOH) are not corrosive to stainless steel as long as
 - Concentration is not too high
 - Temperature is not too high
- Corrosion mechanisms are
 - General corrosion.
 - Stress corrosion cracking
- 304L austenitic stainless steel has been used successfully for many caustic applications in the pulp and paper industry
 - Reasonable long service life and low replacement cost when using a welded pipe

Stainless steel chemical composition

Typical chemical composition (nominal), %									
Austenitic grades									
Alloy	UNS	С	Cr	Ni	Мо	Ν			
304L	S30403	<0.03	18.5	10	-				
316L	S31603	<0.03	17	11.5	2.1				
904L	S08904	<0.03	20	25	4.5				
Duplex grades									
2304	S32304	<0.03	22.5	4.5	0.3	0.10			
2205	S32205	<0.03	22	5	3.2	0.18			
2507	S32750	<0.03	25	7	4	0.30			
2906	S32906	< 0.03	29	7	2.3	0.35			

Stainless steel chemical composition

Typical chemical composition (nominal), %									
Austenitic grades									
Alloy	UNS	С	Cr	Ni	Мо	Ν			
304L	S30403	<0.03	18.5	10	-				
316L	S31603	<0.03	17	11.5	2.1				
904L	S08904	<0.03	20	25	4.5				
Duplex grades									
2304	S32304	<0.03	22.5	4.5	0.3	0.10			
2205	S32205	<0.03	22	5	3.2	0.18			
2507	S32750	<0.03	25	7	4	0.30			
2904	S32906	<0.03	29	7	2.3	0.35			

Stainless steel chemical composition

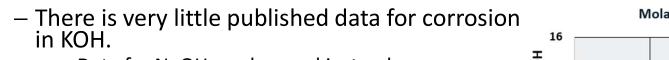
Typical chemical composition (nominal), %									
Austenitic grades									
Alloy	UNS	С	Cr	Ni	Мо	Ν			
304L	S30403	<0.03	18.5	10	-				
316L	S31603	<0.03	17	11.5	2.1				
904L	S08904	<0.03	20	25	4.5				
Duplex grades									
2304	S32304	<0.03	22.5	4.5	0.3	0.10			
2205	S32205	<0.03	22	5	3.2	0.18			
2507	S32750	<0.03	25	7	4	0.30			
2904	S32906	<0.03	29	7	2.3	0.35			

Corrosion resistance of austenitic and duplex grades

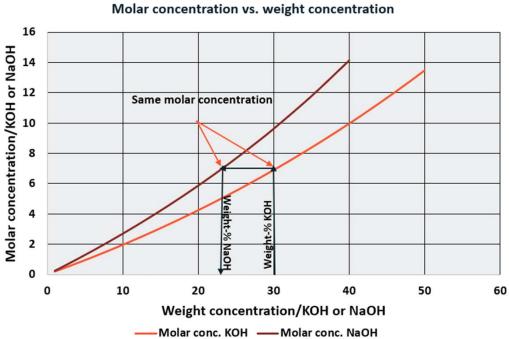
- General corrosion data for selected stainless steel grades in NaOH


							-					
Conc. %	10	10	10	20	20	25	25	30	30	30	40	40
Temp. °C	20	90	103=BP	20	90	20	112=BP	20	100	116=BP	80	90
Carbon steel	0			0		0		0				
13 Cr	0	0	1	0	1	0	2	0	1	2	1	1
304L (1.4306)	0	0	0	0	0	0	0	0	0	1s	0	0
316L (1.4435)	0	0	0	0	0	0	0	0	0	Os	0	0
904L	0	0	0	0	0	0	0	0	0	Os	0	0
Duplex 2304	0			0				0	0	OND	0	0
Duplex 2205	0			0				0	0	OND		
Duplex 2507	0			0				0	0	OND		

0 = <0.1mm/y 1 = 0.1 – 1 mm/y S = Stress corrosion cracking ND = Not tested BP = Atmospheric Boiling point Source: Corrosion handbook stainless steels

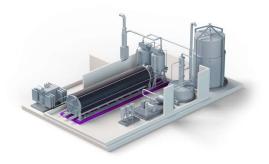

Duplex grades in strong caustic solutions

- In-house testing of duplex grades suitable for caustic service
- Duplex 2304 and 2205 show very similar performance
- Duplex 2906 outperforms the other grades.
 - 0.05 mm/y in boiling 40% NaOH
- Results confirm that higher chromium concentration gives better corrosion resistance.



Conversion of corrosion data for NaOH to KOH

- Data for NaOH can be used instead.
- Na+ and K+ do not play an active part in the corrosion process.
- The corrosive part of a caustic solution is the OH- ion.
 - The molar concentration of OH- governs the corrosivity of the solution.
- Potassium is heavier than sodium.
 - 20 weight-% KOH has a lower OH concentration than 20 weight-% NaOH.
 - 20 weight-% NaOH more corrosive than 20 weight-% KOH.
 - 30 weight-% KOH \approx 23 weight-% NaOH.



Design criteria

- For some alkaline electrolyzer plants, the design criteria are very tough.
 - 40% KOH (\approx 32% NaOH).
 - Up-concentration when water is consumed.
 - − T = 120°C.
 - P = 40 bar.
- Design life >30 years without any replacement of components...
 - Corrosion rates >0.05 mm/y adds up to >1.5 mm/y.
 - No corrosion products allowed.
 - Can cause fouling of piping system, tanks, and cell stack.

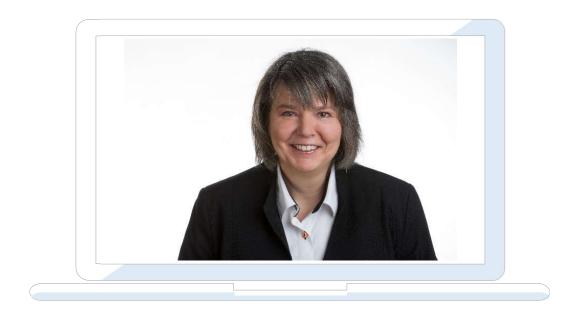
Parts after electrolyzer stack and for gas separation are exposed to high pressures of

Hydrogen

- Cause loos the ductility and embrittlement of
 - Austenitic stainless steels with low nickel content
 - Duplex stainless steels because of the ferrite content
- Higher alloyed austenitic grades should be considered

Oxygen

- Increase the risk for SCC of stainless steel grades
- More tests and investigations are necessary to find the best suitable stainless steel grades



Conclusions

- Alkaline electrolyzers are well-established in the hydrogen market
 - 300-series stainless steel has served well
- New developments and demands on performance and plant service life make duplex grades highly attractive
- Resistance towards stress corrosion cracking at high oxygen pressures must be investigated
- Suitability of duplex grades in high-pressure hydrogen service is questionable

Angela Philipp Technical Marketing Specialist Alleima Tube EMEA

My contact information

angela.philipp@alleima.com

🔟 www.materials.alleima

0

+49 1732975515

Alleima GmbH, Hansaallee 101, 40549,Düsseldorf, Germany

