Large-scale water electrolysis for decarbonized and other hard to abate industries

Paul Dainora Head of Business Development Green Hydrogen thyssenkrupp nucera

Objective - H2 Production System Certification

- Establish a Certification Process
 - Regulation and design
 - Safety aspects
 - Performance & Quality
- Basis for an international technical Standard

With 25+ industry partners

Focal points for the Joint Industry Project partners

1	Acceleration of authorization procedure by certification and test	5	Efficiency/performance/comparability parameters of electrolysers
2	Quality and service life of electrolysers	6	Control/safety technology, converters, balance management
3	High hydrogen quality	7	Safe structures and transport systems
4	Safe production and storage	8	Support safety and reliability standards for planning, construction and operation of the plants

Project deliverable description, by 2023

Partners of the DNV-led JIP

We need to save the global climate

Low cost renewable energy is the basis for competitive green hydrogen production

- Solar and wind power costs continue to decline at a rate of c.11% per year¹
- Hydrogen costs expected to decline accordingly, as electrical power constitutes majority of total cost
- Record prices as low as 10.4 USD/MWh² for solar PV

LCOE = Levelized Cost of Energy

1. Source: IRENA (2021), Renewable Power Generation Costs in 2020, International Renewable Energy Agency, Abu Dhabi 2. ACWA Power, Price achieved in Saudi Arabia's Shuaibah Project

Today's hydrogen market volume is already 94 Mt

Hydrogen market 2021¹ Other² 2021 Current gray H₂ 6% market generates Methanol ~1000 940 16% Refining ca. GW 42% Mt of CO₂ 94 Mt¹ emissions per 3700 TWh electrolysis >100 billion €³ year⁴... ... Total industry⁵ Ammonia ...assuming 94 Mt of 36% generates 24% of green H₂ production with global emissions 75% energy efficiency and 4,900 full load hours of operation p.a. Nearly all deployed in industry³

1. Source: IEA (2022), Hydrogen, IEA, https://www.iea.org/reports/hydrogen 2. Includes DRI and other industrial uses 3. H2 kg value from: Bloomberg News, Hydrogen Generation Market Worth \$201 Billion by 2025, February 16, 2021 4. Assuming emissions from steam methane reforming of 10 tons of CO2 per ton of hydrogen _5. Refers to 2019 Other Energy Industries and Industry uses

Hydrogen Tech Conference 2023

The worldwide hydrogen market is expected to grow sevenfold by 2050

04 April 2023 | Paul K. Dainora | Essen

Tremendous momentum for hydrogen projects globally

60% of announced volumes feature green hydrogen, corresponding to ~ 163 GW³ electrolysis

1. Converted from Mt with an energy content of 1kg of hydrogen equal to 141.9 MJ (HHV) = 39.4 KWh 2. Green market share not given for 2019 and 2020 3. Source: Hydrogen Council in collaboration with McKinsey & Company, Hydrogen for Net Zero Report, November 2021; Hydrogen Council in collaboration with McKinsey & Company, Hydrogen Insights, September 2022

The hydrogen economy has broad-based secular support for growth

	Government policy and consumer demand	 Green hydrogen driven by net zero targets and green recovery policies Increasing CO₂ emission costs promotes innovative green energy solutions 		 93 countries have adopted net-zero targets¹ 39 countries have adopted hydrogen strategies¹ 		
	Cost and availability of renewable energy	 Continuous decline of renewable energy costs Growing installed base of renewable energy (wind and solar) 		C.11% global annual decline rate of renewable power ² prices between 2010 and 2020 ³		
8	Diversification of energy supply	 Energy crisis in Europe triggered diversification Synergetic approach with new green value chains 		10 mn t of gH2 imports planned for import to Europe		
H ₂	Opportunity for scalable green H ₂ solutions	 Seen as the only viable solution to decarbonise hard to abate industries Large business potential in all market sectors 		>40 giga-scale production projects announced as of Nov 2021 ¹		
<i>C Hydrogen Tech</i> Conference 2023						

11 04 April 2023 | Paul K. Dainora | Essen 1. Source: Hydrogen Council in collaboration with McKinsey & Company, Hydrogen for Net Zero Report, November 2021 2. Including Solar (PV), Offshore and Onshore Wind 3. Source: IRENA (2021), Renewable Power Generation Costs in 2020, International Renewable Energy Agency, Abu Dhabi Electrolysis connects the renewable energy sector with a wide range of industries and enables industry decarbonization

C Hydrogen Tech Conference 2023

Green hydrogen economy drivers

Climate & environmental protection

Growing renewable energy sector at low cost

Appropriate legal frameworks

Investments into hard to abate sectors

Infrastructure

Enabling clean technologies to meet the Paris climate agreement targets by 2050

Environmental regulations and end-consumer put pressure on industries ...

Pressure across regions with end of free CO₂ allowances in EU ETS most significant End-consumer demand for climate-friendly food

Industry push to decarbonize, as indicated by IMO¹ target of 50% GHG reduction by 2050

Government-mandated quotas in Japan/Korea with aim to meet stringent decarb targets while utilizing existing coal assets ... require clean technologies to meet the Paris Climate Agreement targets

1. International Maritime Organisation

C Hydrogen Tech Conference 2023

04 April 2023 | Paul K. Dainora | Essen

Efficient production of hydrogen requires industrial scale hydrogen plants

Efficient and highly scalable standardised module concepts are needed to match industrial scale market requirements

Changing industries with clean energy

Refining, ammonia, and steel are the focus applications the market is starting with

No alternative to green hydrogen in hard to abate sectors with exposure to carbon tax

Chydrogen Tech Conference 2023

18 04 April 2023 | Paul K. Dainora | Essen

a | Essen Source: Hydrogen Council in collaboration with McKinsey & Company, Hydrogen Insights Report, February 2021 1. Actual breakeven cost dependent on several factors, incl. cost of renewable power and cost of gray alternatives.

Demand

A clear concept for decarbonizing our steel production

- The decarbonisation of the steel industry is a very big lever to quickly achieve significant progress towards climate neutrality.
- Clear concept for decarbonising production that is both technologically mature and scientifically recognised.
- A plan to reduce emissions in steel by 30 percent by 2030. Climate neutrality is envisaged by 2045 at the latest.
- But gigantic quantities of hydrogen will be needed: For the complete conversion to climate-neutral steel production, we will need 720,000 tons of green hydrogen per year.
- The electricity consumption required for hydrogen production corresponds to the current consumption of 25 percent of German households – approximately 36 TWh

Examination of a stand-alone solution of our steel business

Demand

Steel plays a pivotal role in Europe's decarbonization due to its 2.5% contribution to Germany's CO₂ reduction target

CO₂ impact of the steel industry in Germany

65%

 $\rm CO_2$ reduction target 2030 in Germany¹

7% Steel industry share of CO₂ emissions in Germany

2.5% tkSE's contribution to Germany CO₂ reduction target²

Decarbonizing steel operations results in significant progress to achieve **Germany's decarbonization target**

Hydrogen demand comparison in TWh

04 April 2023 | Paul K. Dainora | Essen

| 5. Washing machine with <15kg capacity, 225kg | 6. 5,500 sqm warehouse Source: Company information, McKinsey analysis

Scale up technology for efficient operations

Scale up technology for efficient operations

Scaling up electrolysis plants shows significant cost reduction

4

Only at gigawatt scale **global transport chains** operate efficiently

3

Certified GW-technology with proven supply chain for green hydrogen production is available today

Any questions which need to be further addressed?

Paul K. Dainora Head of Business Development Green Hydrogen

paul.dainora@thyssenkrupp-nucera.com +49 231 229 723 587