

## Ammonia as Hydrogen Carrier

How to increase efficiency of hydrogen reconversion?

Hydrogen Tech World Conference 2023

Hydrogen Tech Conference

**Engineering Performance** 

### H<sub>2</sub> Import/Export: Typical trade routes



Source: TÜV NORD GROUP HydroHub



## Hydrogen carriers

#### "H<sub>2</sub> Storage" Capacities



- Increase of transported H<sub>2</sub> per unit through compression, liquefaction or bonding in "carrier liquid".
- Lowest energy density with GH<sub>2</sub> (gaseous H<sub>2</sub>) even under high pressure.
- LOHC (liquid organic hydrogen carrier) reveals lower energy density compared to LH2 (liquefied H<sub>2</sub>), but on same level as GH<sub>2</sub> at 700 bar.
- Ammonia (NH<sub>3</sub>) has highest H<sub>2</sub>-storage capacity followed by methanol.
- LOHC and methanol have easy storage technologies at ambient temperature and pressure (like mineral oil).
- Ammonia, methanol and LOHC need energy intense reconversion processes to recover H<sub>2</sub>.

Highest "storage" capacities can be achieved with methanol and ammonia. The storage and handling technologies for these " $H_2$ -carriers" are well known and proven.





## Hydrogen carriers

Energy losses for conditioning, production and reconversion relative to their energy content of "stored" H<sub>2</sub>



 LH<sub>2</sub> (liquefied H<sub>2</sub>) needs electrical energy for conditioning (liquefaction at -253 °C).

- LOHC needs thermal energy for reconversion of H<sub>2</sub>, but produces heat during uptake of H<sub>2</sub>.
- NH<sub>3</sub> needs thermal energy for production as well as for reconversion of H<sub>2</sub>.
  - Production and handling of ammonia (NH<sub>3</sub>) is proven and shows relatively low energy losses.
  - However, reconversion of ammonia to H<sub>2</sub> consumes a lot of energy due to the high catalytic cracking temperature (400-700 °C) and endothermic reaction.

Source: EE ENERGY ENGINEERS GmbH & Co. KG (TÜV NORD GROUP)

The crack catalyst is a key element to reduce the cracking temperature and increase the energy efficiency of the NH<sub>3</sub> reconversion process!

**C Hydrogen Tech** Conference 2023

4 Dr. Frank Sowa | NH3 Cracking | 03.04.2023



## **Reconversion of NH<sub>3</sub>**

Testing of catalytic ammonia cracking at DMT

- Test parameters
  - $T = 300 \degree$ C to 900 °C
  - P = atmospheric pressure
  - Ammonia Flow up to 60 l/min (99,9%  $NH_3$ )
  - GHSV (Gas hourly space velocity) 2.000, 4.000 and 6.000 h<sup>-1</sup>
  - NH<sub>3</sub>-conversion (per gas chromatography)
  - Catalyst volume max. 570 cm<sup>3</sup>
    (85 mm diameter x 100 mm height (cylinder))
- Actually 4 catalysts of different composition in test phase
  - Variation in composition of catalysts (content)
  - Variation in doted metal

## Ammonia cracking tests in own laboratory

#### Data logging and visualization in DMT SAFEGUARD system



**C** Hydrogen Tech Conference 2023



## Test results of ammonia cracking

#### Thermal cracking of NH<sub>3</sub>





## Test results of ammonia cracking

#### Catalytic cracking of NH<sub>3</sub>





## **Concepts for ammonia cracking**



## Concepts for ammonia cracking



## Conclusions

How to increase efficiency of hydrogen conversion?

- Highest "H<sub>2</sub>-storage" capacities can be achieved with methanol and ammonia (NH<sub>3</sub>).
  - The storage and handling technologies for these carriers are well known.
  - Supply of NH<sub>3</sub> as hydrogen carrier seems to become favourite option.
- The cracking catalyst is a key element to reduce the cracking temperature and increase the energy efficiency of the NH<sub>3</sub> reconversion process.
  - Optimum between catalyst costs and efficiency has to be identified.





## Conclusions

How to increase efficiency of hydrogen conversion?

- The cracking reactor concept can be decisive for the energy efficiency of the cracking plant.
  - A catalytic membrane reactor offers a process efficiency increase.
    - Clean H<sub>2</sub> is directly available as permeate (but can be upgraded further).
    - Removal of  $H_2$  as permeate from process enhances  $NH_3$  reconversion (principle of Le Chatelier).
    - Smaller plant dimensions for retentate upgrading and NH<sub>3</sub> recirculation.
    - Catalytic membrane reactor needs constant process operation (sensitive to start-up / shutdown operations / temperature changes).







# Thank you for your attention!

Contact: Dr. Frank Sowa DMT GmbH & Co. KG Industrial Engineering Am TÜV 1, D-45307 Essen T +49 201 172 1207 F +49 201 172 1241 M +49 171 2271 650 E frank.sowa@dmt-group.com www.dmt-group.com

Hydrogen Tech World Conference 2023

Hydrogen Tech World Confere **Engineering Performance**