

On the path to low Levelized Costs of Hydrogen (LCOH):

Electrolysis technology considerations

April, 2023 Carlos Bernuy-Lopez, PhD

Senior Consultant

What to expect in next 20 min?

- 1. Ramboll as partner in your Power to X project
- 2. Hydrogen plants and importance of electrolyzer technology
- 3. Relationship between LCOH and electrolysis technologies: watch your OPEX!

Ramboll in brief

- Independent architecture, engineering and consultancy company
- Founded 1945 in Denmark
- 17,500 experts
- Present in 35 countries
- Particularly strong presence in the Nordics, the UK, North America, Continental Europe, and Asia Pacific
- Creating sustainable solutions across Buildings, Transport, Energy, Environment & Health, Water, Management Consulting and Architecture & Landscape.
- EUR 1.8 billion revenue
- Owned by Rambøll Fonden The Ramboll Foundation

We are a multidisciplinary society consultant

1,750 employees in 15 countries

Ramboll Energy -Fields of expertise

- Wind & solar
- Biofuels and Bio-to-X
- Green hydrogen and Power-to-X
- Carbon capture, CCUS & BECCS
- Fuel cells
- Datacenters
- Energy infrastructure
- District energy & heating
- Biogas
- Waste-to-energy
- Energy-intensive industries
- Thermal power generation
- Power transmission and distribution

Power-to-X: A pathway to decarbonising sectors that cannot easily be electrified

Explore with confidence

- World-class technical expertise on Hydrogen and Power-to-X
- 130 successful hydrogen projects in 2020-2023
- Holistic and multi-disciplinary approach
- Excel in integration of complex systems
- Co-create the best solutions with and for our partners

Recent completed projects

Idea Concept Development Pre-feasibility Study	Funding	Feasibility Study Risk Assessment Permitting	Basic Engineering Planning
		Mar Hable and The	
 Energy Island Vindø (CIP) Bornholm Bunker Hub PTX potential on Lolland 	 DynAmmonia - project application Technical Advisor to European Investment Bank 	 Power-to-Ammonia (CIP) Hydrogen Refuelling Stations Windpark Kremsdorf PTX in Greenland 	 H2 Energy Esbjerg, 1 GW SSV Energipark (Ørsted) HySynergy (Everfuel) Green Hydrogen Hub

Key elements of a large-scale H₂ production plant

Role of Green Hydrogen in Decarbonizing EU industry

European Union (yearly)

- > 8 Mt Grey Hydrogen → 200 Mt CO₂ Emissions (≈ 7 % of EU)* → ≈ 300 000 Jobs
- ➤ 160 Mt Steel → 221 Mt CO₂ Emissions (≈ 8 % of EU)* → ≈325 000 Jobs

RePower EU plans for Renewable Hydrogen by 2030

- 10 Mt Internally + 10 Mt Exported
 10 Mt = 70 GW Electrolysers = 150-200 GW
 New Renewable Energy Generation
- > 1 Mt Green Steel = 55 000 t Green Hydrogen

Sweden in the forefront of Green Steel

H₂ Green Steel and Hybrit in Sweden will produce 3.5 Mtonnes with 1.4 GW size electrolysers

1 million tons of steel requires 55 000 tonnes of H₂ annually, i.e. 400 MW size electrolysers

	Steel production	Emissions share	Electrolysers size
World	1900 Mt/year	8 %	760 GW
Europe	160 Mt/year	5 %	64 GW
Sweden	4.7 Mt/year	12 %	1.8 GW

12

H₂ Plant: what do you have inside?

H₂ Plant: what do you have inside?

H₂ Plant: what do you have inside?

H₂ Plant: many components!

H₂ Plant: many components!

H₂ Plant: example with n electrolysers

H₂ Plant: needs even more components!

Summary of technologies: stack

Green Hydrogen Production by Water Electrolysis

Green Hydrogen Production by Water Electrolysis

	Low Temperature				High Temperature
Туре	Atmospheric Alkaline (AWE)	Pressurized Alkaline (PAWE)	Proton-Exchange Membrane (PEM)	Anion Exchange Membrane (AEM)	Solid Oxide Electrolysis Cell (SOEC)
Electrolyte	Liquid (KOH-OH ⁻)		Solid (NAFION-H ⁺)	Solid (DVB-OH-)	Solid (YSZ/CGO-O ²⁻)
Pressure	Ambient	Up to 30 bar	Up to 70 bar	Up to 35 bar	Ambient
Temperature	60-80 °C		60-80 °C		600-850 °C
Materials	Ni, carbon steel		Ti, Pt, Ir	Ni, steel	Y, Zr, Ni, Co, Stainlesss steel
Stack size	1-5 MW	5 MW	1-2 MW	1-5 kW	10-50 kW
System size	1 GW	1 GW	1 GW	1 MW	50 MW

Summary of technologies: stack

	Alkaline	PEM	SOEC
Size	5 MW / 15 m³	2.5 MW / 2 m ³	0.05 MW / 0.1 m ³
H ₂ production	101 kg/h	49 kg/h	1.3 kg/h
Energy consumption	51 kWh/kg (65 %)	52 kWh/kg (64 %)	40 kWh/kg (83 %) – Up to 35 kWh /kg (95 %) with external heat
Life time	80 000 h	60 000 h	20 000 h

Summary of technologies: different electrolyser types

	Constitute do Constitute do Consti		TOPSOE
	Alkaline	PEM	SOEC
Advantages	+ Low CAPEX+ Mass Manufacture	+ High Flexibility+ Small footprint	 + Low energy consumption + Inexpensive materials
Drawbacks	 Large footprint Energy consumption 	High CAPEXEnergy consumption	 Small volume productions Durability

Summary of technologies: 2030 perspective

	Alkaline	PEM	SOEC
R&D efforts	Improved efficiency with better catalyst microstructures	Reduced expensive components such as Ti, Ir, Pt	Increase stack sizes and durability
2030 perspective (if R&D succesful)	Industrial projects with continuous supply of electricity	Projects with limitation of space and variable renewable electricity	Industrial projects with excess heat available

Levelized Cost of Hydrogen (LCOH): Impact of Electrolysis Technology

The importance of addressing OPEX in order to obtain low Levelized Cost of Hydrogen (LCOH)

Reduction in LCOH (%)

-25 % OPEX reduction

SOEC + excess heat

SOEC

17 %

reduction

PEM Alkaline

Hydrogen Tech

LCOH vs Electricity Price

LCOH vs Electricity Price

World

LCOH vs Electricity Price

Take home messages and perspectives

• Power-to-X : Ramboll capabilities → From Initiation to execution

• H₂ plant: More than electrolysers

• Electrolysis technologies: Pros and Cons with every technology. Think about the specificity of your project

• LCOH: Electricity price is your key parameter \rightarrow Think of your OPEX!

For further information please contact

Carlos Bernuy-Lopez Senor Consultant – Power-to-X carlos.lopez@ramboll.com

Eva Ravn Nielsen Chief Advisor – Power-to-X <u>ERNS@ramboll.com</u>

Bright ideas. Sustainable change.

Bright ideas. Sustainable change.

Thanks!

Danke!

¡Gracias!

Tack!!

