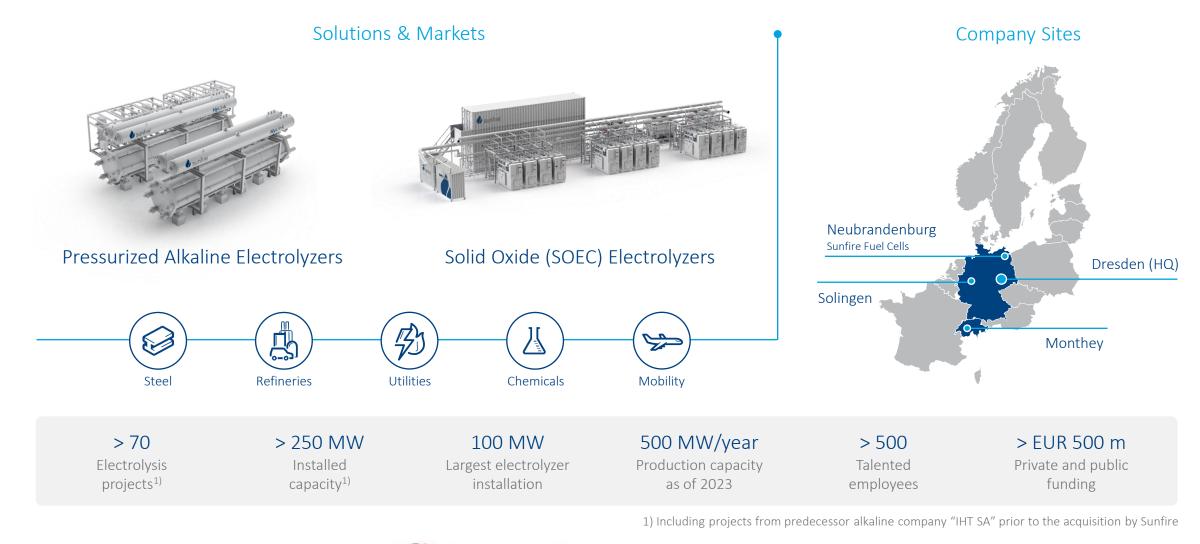


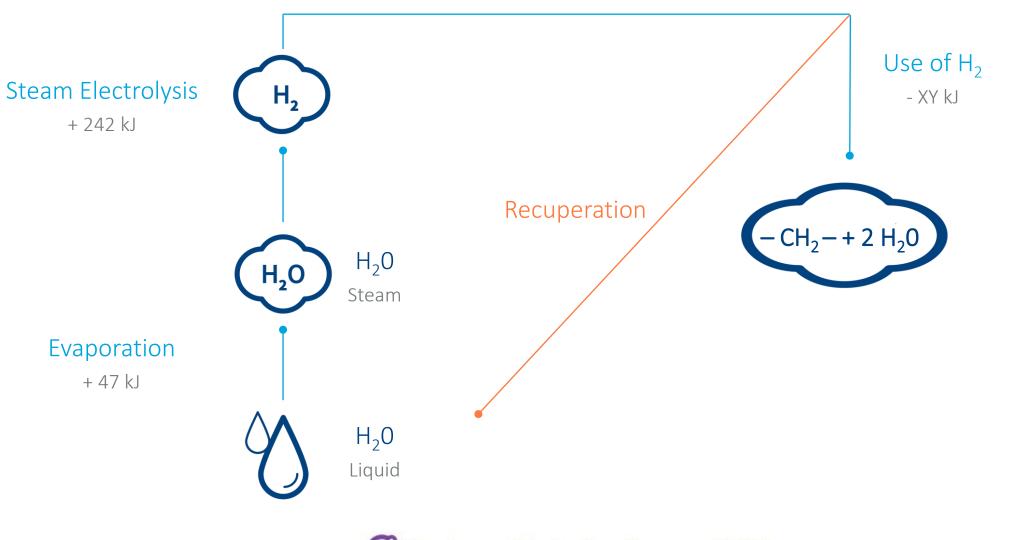
# SOEC ELECTROLYSIS


The game changer for industrial applications

05/04/23 Christian von Olshausen (CTO)



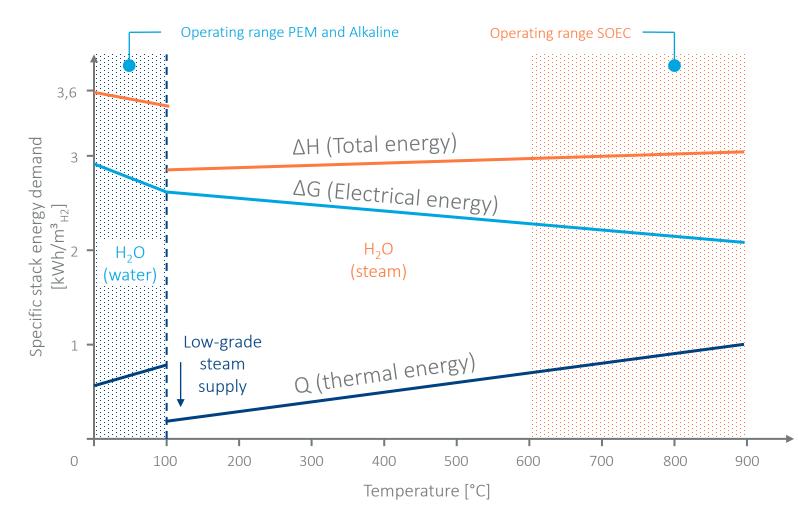
#### EXECUTIVE SUMMARY


## Sunfire is a leading industrial electrolysis company



Conference 2023

#### OPERATING PRINCIPLE


## SOEC electrolysis uses heat as additional energy feed to electricity



**C Hydrogen Tech** Conference 2023

#### SOEC CONVERSION EFFICIENCY

## SOEC's efficiency outperforms low-temperature electrolysis technologies

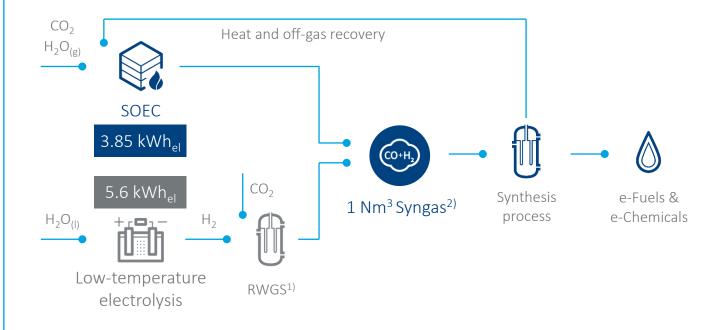


- Due to the dissociation of steam, SOECs require less energy compared to liquid water.
- SOEC has a theoretical minimum stack efficiency advantage of 16 % assuming optimal lowtemperature conversion.
- As roughly one-fifth of the total required energy comes from heat, SOECs require less renewable electricity.
- Today, compared to state-of-theart low temperature electrolysis, SOECs achieve a 30 % higher conversion efficiency on a system level.



#### CORE ADVANTAGES

## SOEC achieves superior electrical efficiency and produces syngas in one step


 $H_2O_{(g)}$   $0.8 \text{ kWh}_{th}$  SOEC  $3.6 \text{ kWh}_{el}$   $4.5 - 4.9 \text{ kWh}_{el}$   $H_2O_{(l)}$ Low-temperature electrolysis

**Electrical Efficiency** 

- SOEC uses heat (provided as steam) as additional energy feed to electricity, thus lowering electricity demand
- The efficiency advantage translates into electricity savings of up to 25 %

### CO<sub>2</sub> utilization capability

One-step syngas production



- With a one-step SOEC co-electrolysis of  $CO_2$  and  $H_2O$  to syngas, significant CAPEX and OPEX savings can be realized
- Production of syngas for Fuels and Chemicals requires a more CAPEX and energy intensive 2-step process using low-temperature electrolysis

1) Reverse-Water-Gas-Shift reaction is required in order to generate Carbon monoxide (CO) 2)  $3.17 \text{ kWh/Nm}^3$  lower heating value of syngas (H<sub>2</sub>:CO = 2)



#### GRINHY

## First industrial demonstration of SOEC electrolyzers









# 1 MW

-150 / +30 kWAC RSOC prototype system

- Reversible SOC system with 3 operation modes
  - Hydrogen production (40 Nm<sup>3</sup>/h)
  - Power production from natural gas
  - Power production from hydrogen
- Integrated into an iron-and-steel works using existing infrastructures
- System tested for load management and grid balancing
- Decommissioned after 13,000 hours
- 90,000 Nm<sup>3</sup> H2 produced and injected

Note: This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 826350. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Germany, Luxembourg, Italy, France.



#### $\mathsf{GRINHY2.0}$

## In the follow-up project, SOEC electrolysis has reached megawatt scale



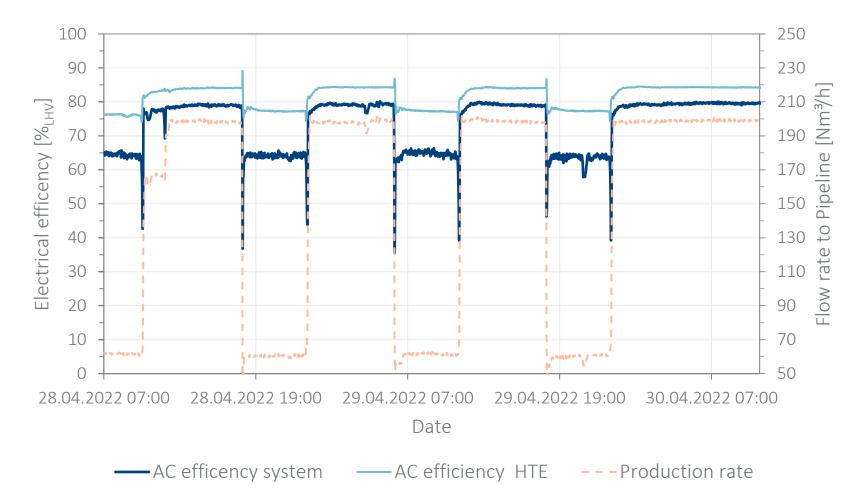
Showcasing renewable hydrogen production via SOEC's steam electrolysis at megawatt-scale, utilizing waste-heat from the iron- and steel works of Salzgitter Flachstal GmbH.

Note: This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 826350. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Germany, Luxembourg, Italy, France.



#### $G\,R\,I\,N\,H\,Y\,2\,.\,0$

## Salzgitter Flachstahl operates the world's largest high-temperature electrolyzer


- Up to 8 modules of generation 1 in a containerized system
  - $\cdot\,$  Up to 1 MW electrolysis power
  - $\cdot\,$  Easy transport and implementation
  - Modular approach enables rapid exchange and low downtime



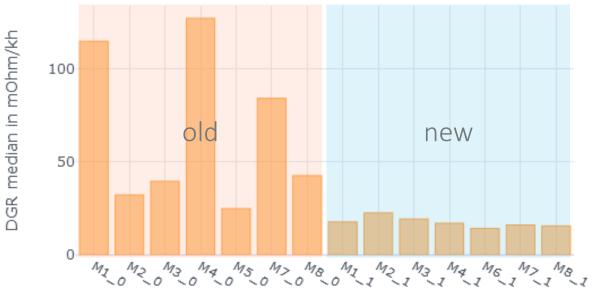


#### $\mathsf{GRINHY2.0}$

## The SOEC electrolyzer has achieved record efficiency



 $\rightarrow$  84 %<sub>LHV</sub> (39.7 kWh/kg) at full load, 79 %<sub>LHV</sub> (42.2 kWh/kg) including compression


Conference 2023

#### $\mathsf{G}\,\mathsf{R}\,\mathsf{I}\,\mathsf{N}\,\mathsf{H}\,\mathsf{Y}\,\mathsf{2}\,.\,\mathsf{0}$

## In the course of the GrInHy-projects, degradation could be reduced significantly

- "Old" modules operating hours: 600...9000 hours
  - $\cdot$  high degradation rates, early stack failures
  - $\cdot\,$  all modules replaced by now
- New modules operating hours: 5000...11000 hours
  - Very low average degradation: 7.5...19.0
    mOhmcm<sup>2</sup>/kh (average 14 mOhmcm<sup>2</sup>/kh)
  - ightarrow 0,35 % Production Rate Loss

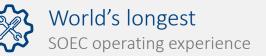
Module median DGR related to hot time



Modules

Conference 2023

### ONGOING PROJECTS


## SOEC has reached multi-megawatt scale



> 5 MW Installed SOEC electrolysis capacity



> 10 industrial projects with global companies





| MultiPLHY          | H <sub>2</sub> |
|--------------------|----------------|
| 3 MW               | HyLink SOEC    |
| Refineries         | NESTE          |
| Commissioning 2022 | 116316         |







Commissioned 2020






Power-to-X Commissioned 2022

1) Disclaimer: Please find the funding acknowledgement information at the end of the presentation



#### PRODUCT ROADMAP

## We are further developing SOEC electrolysis



| Next Gen D                            | evelopment            | Next                              | <b>Gen</b> Roll-out             | Next Gen mass commercialization |
|---------------------------------------|-----------------------|-----------------------------------|---------------------------------|---------------------------------|
| Radically<br>improved<br>stack design | Test module operation | Start-up<br>commercial<br>modules | Startup-up<br>10+ MW Prototypes | Scale-up to GW                  |



# THANK YOU!

Christian von Olshausen, CTO christian.olshausen@sunfire.de

Sunfire GmbH · Gasanstaltstrasse 2 01237 Dresden · Germany www.sunfire.de

